Paper Id: 233425

Roll No.

B. TECH. (SEM I) THEORY EXAMINATION 2022-23 MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Find the value of 'b' for which the rank of the matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10 \end{bmatrix}$ is 2.pe
- The Eigen values of A are 2,3,1 then find the Eigen values of $A^2 + A$. b.
- State Roll's Theorem. c.
- d. If $y = \log x^3$ then find y_n .
- What is the functional relation between $u = \frac{x}{v}$ and $v = \frac{x+y}{x-y}$. e.
- Compute an approximate value of $(1.04)^{3.01}$ f.
- Evaluate $\iint_{0}^{1} xydydx$ g.
- Evaluate the area enclosed between the parabola $y = x^2$ and the straight line y = xh.
- Prove that if \vec{u} and \vec{v} are irrotational then $\vec{u} \times \vec{v}$ is solenoidal. i.
- Find $\nabla(\log r)$ if $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is position vector. j.

SECTION B

2. Attempt any three of the following:

10x3 = 30

Reduce the following matrices to its normal (or canonical) form and find the rank: a.

$$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$$

- If $x = \sin(\sqrt{y})$ then find $(y_n)_0$. b.
- A rectangular box, open at the top, is to have a volume of 32 c.c. Find the dimensions c. of the box requiring least material for its construction.
- Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx$ d.

e. Find the constants a and b such that the curl of a vector $\vec{A} = (2xy + 3yz)\hat{i} + (x^2 + axz - 4z^2)\hat{j} + (3xy + 2byz)\hat{k}$ is zero.

SECTION C

3. Attempt any *one* part of the following:

10x1=10

a. Find the inverse of the following matrices:

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

b. Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

4. Attempt any *one* part of the following:

10x1=10

- a. If u = f(y z, z x, x y), Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
- b. Trace the following curves: $y^2(2a-x) = x^3$
- 5. Attempt any *one* part of the following:

10x1=10

- a. Expand $\sin^{-1} x$ up to four terms in powers of x.
- b. If u, v, w are the roots of the equations $(x-a)^3 + (y-b)^3 + (z-c)^3 = 0$, then find $\frac{\partial(u, v, w)}{\partial(a, b, c)}$.
- 6. Attempt any one part of the following:

10x1=10

- a. Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{xdxdy}{x^2 + y^2}$ hence evaluate the same
- b. Evaluate by changing the variables, $\iint_R (x+y)^2 dx dy$ where *R* is the region bounded by parallelogram x+y=0, x+y=2, 3x-2y=0, 3x-2y=3
- 7. Attempt any *one* part of the following:

10x1=10

- a. Evaluate $\iint_{S} (a^2x^2 + b^2y^2 + c^2z^2)^{1/2} dS$ where S is the surface of the ellipsoid $ax^2 + by^2 + cz^2 = 1$.
- b. Find the directional derivative of $\phi = 5x^2y 5y^2z + \frac{5}{2}z^2x$ at the point P(1,1,1) in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$.